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. A well-developed pingo can be a striking geomorphic form (Figure 6.12). However
pIngos are not common features and their existence is usually the result of a number of,
distinct and limiting geomorphic and hydrologic conditions. Pingos vary from a few meters
to over 60m in height and up to 300m in diameter. They range in form from symmetric
to asymmetric, to elongate. Not all pingos have a typical conical form. Their one common’
f;harac.telristic3 however, usually concealed by 1.0-10.0m of overburden, is a core of massive
ice or icy sediments. The ice may be remarkably pure, sometimes with seasonal bubble-
rich and bubble-poor banding, or it may consist of layers of icy sediments. Fractures and
faults are sometimes seen within the pingo ice core. Frequently, pingos portray dilation
cracks and are ruptured near the summit. This is the first stage in decay, melt of its ice

core, collapse of the mound, and ultimate formation of a shallow-rimmed depression

(Figure 6.13).

Pingos were first described from northern Canada by Dr John Richardson (1851). They
were 'later described in more detail from northern Alaska (Leffingwell, 1919) and from
Siberia (Tsytovich and Sumgin, 1937). A. Leffingwell (1919) was the first to suggest
hydraulic pressure as the cause while the botanist, A. E. Porsild (1938) was the first to
suggest freezing in a closed system. Although the terms “open-system” and “closed-
system” explain pingo growth, the words “hydraulic” and “hydrostatic” better identify the
source of the water pressure that initiates and sustains pingo growth (Mackay, 1979a).
These terms are used here. Put simply, hydraulic-system pingos derive their water ’pressure
from a topographic gradient and hydrostatic-system pingos derive their water pressure
from pore-water expulsion beneath aggrading permafrost in saturated sand.

Figure ¢, : rauli i “ i i
Wg € 6.12. Large hydraulic (open) system pingo (“Inner Pingo”) in Adventdalen, Svalbard.
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The photo, taken April 2006, is supplied courtesy of Professor 0. Humlum,
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nature, composed of icy sediments, while the larger forms possess massive ice cores 5-10m
thick, formed through the repeated injection of water.

Approximately 500 hydraulic (open) system pingos occur in central Alaska and interior
Yukon Territory (Holmes et al., 1968; Hughes, 1969). They are preferentially located on
lower south- and southeast-facing valley-side slopes. Theoretical calculations by Holmes
et al. (1968) suggest that the average pressure required to overcome the tensile strength
of frozen ground and to subsequently maintain a 30m high pingo is considerably higher
than most artesian pressure measured in central Alaska. This probably explains why the
majority of open-system pingos in Alaska and Yukon Territory never attain a fully-domed
state but persist largely as doughnut-shaped, semi-circular, or circular ramparts. It
may also explain why many of the hydraulic (open) system pingos on Svalbard and East
Greenland are much larger because relative relief is greater and the hydraulic head,
provided by adjacent sub-glacier melt water, is higher.

6.5.3. Hydrostatic (Closed) System Pingos

Hydrostatic (closed) system pingos result from pore-water expulsion caused by permafrost
aggradation beneath the bottoms of drained lakes that are underlain by saturated sand
(Mackay, 1962, 1985b, 1998). The highest concentration of this type of pingo occurs in
the Tuktoyaktuk Peninsula area of the Pleistocene Mackenzie Delta region of Canada,
but others occur elsewhere in northern Canada (Craig, 1959; French, 1975b; Pissart
and French, 1976; St-Onge and Pissart, 1990; Tarnocai and Netterville, 1976; Zoltai,
1983), northern Alaska (Leffingwell, 1919; Walker et al., 1985), and central Siberia
(Soloviev, 1973a).

The high concentration of hydrostatic-system pingos in the Tuktoyaktuk Peninsula area
is the result of several favorable physical conditions. These include: (i) the occurrence of
thick permafrost, (ii) large areas underlain by coarse-grained sediment, and (iii) numerous
thermokarst lakes that drain frequently and easily, either by coastal erosion or by fluvio-
thermal erosion along ice-wedge polygons (Mackay, 1998, p. 275). Typically, hydrostatic-
system pingos occur within shallow lakes or former lake beds where both upward and
downward permafrost growth occurs in the previously-unfrozen saturated sediment which
comprises the sub-lake talik (Figure 6.14). They usually occur singly and not in groups,
although at least one drained-lake basin is known to contain at least three actively-growing
pingos (Mackay, 1973a, 1979a). On Banks Island, certain hydrostatic system pingos appear
to have formed following the freezing of localized taliks that must have formed beneath
the deeper sections of now-abandoned river channels (Pissart and French, 1976).

Detailed long-term field studies upon the growth of hydrostatic (closed) system pingos
in the Tuktoyaktuk area have been undertaken by J. R. Mackay (1973a, 1979, 1981,
1986b, 1988b, 1990b, 1998).

The birth of a small pingo called Porsild Pingo (Mackay, 1988a) is typical of the early
gr.owth cycle. This pingo has grown in a lake which drained catastrophically about 1900.
Birth probably took place between 1920 and 1930 when newly-aggrading permafrost rup-
tured and water was intruded into the unfrozen part of the active layer. A smail mound,
approximately 3.7m high, was photographed by A. E. Porsild in May 1935 and subse-
quently described as part of a paper on “earth mounds” (Porsild, 1938, p. 53). Since then,
PO}‘sild Pingo grew steadily until 1976, at a growth rate approximately linear with height.
Alter 1976, the growth rate has fallen. A similar pattern of rapid early growth (~1.5m/yr)
Was monitored in a former lake bed that was drained by coastal erosion sometime between
1935 and 1950 (Mackay, 1973a, 1979a, pp. 14-18). Although quantitative observations on
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Figure 6.14. Genesis and growth of hydrostatic (closed) system pingos. (A) A large lake is under-

" lain by unfrozen saturated sand. (B) Rapid lake drainage causes permafrost aggradation, pore-water

expulsion, and development of hydrostatic pressure beneath a residual pond where permafrost is
thin. (C) A growing pingo is underlain by a sub-pingo water lens whose downward freezing results
in intrusive ice. (D) The total volume of ice required to grow a pingo is equal to the pingo volume
above that of the bottom of the residual pond in which growth commenced. (E) Pingo collapse from
partial thaw of pingo ice beneath the central pond that is surrounded by a pingo rampart. From
Mackay (1998). Reproduced by permission of Les Presses de L'Universite de Montreal.

bulganniakh growth in Siberia are lacking, similar growth patterns are observed. For
example, some hydraulic (open) system bulganniakhs have developed in recently-drained
thermokarst (alas) depressions within the last 50 years. Eye-witness accounts indicate
early growth rates of approximately 0.5-2.0m/year (Soloviev, 1973a).

As pingos become older, their growth rates decrease. Some of the largest pingos, such
as Ibyuk Pingo, are over 1000 years old and growing at arate of only 2-3 cm/year (Mackay,
1986b). As a rough estimate, Mackay suggests that, for the Mackenzie Delta region, pos-
sibly 15 pingos may commence growth in a century. Probably, only approximately 50 are
actively growing today.

Hydrostatic (closed) system pingos often exhibit pulsating patterns of heave or growth
(Mackay, 1977a). This is caused by the build-up of water lenses that develop under pres-
sure beneath the growing pingo (Mackay, 1978b). These pressures are released when water
escapes to the surface, usually towards the periphery of the pingo where overburden
strength (ie. permafrost thickness) is least. This may result in seasonal frost mounds
forming on the flanks of growing pingos (Mackay, 19792, pp. 18-24). It penetrated by
drilling, these water lenses can cause temporary artesian flow and geysers several meters
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result from the downward propagation of the cold and warm seasonal temperature waves.
The gradual transition from clear t0 bubble-rich ice reflects the change from winter to
summer, and the abrupt transition from bubble-rich to clear ice reflects the change from
summer to winter.

In summary, hydrostatic (closed) system pingo growth is an example, albeit dramatic,
of lake-bottom heave and aggrading permafrost.

6.5.4. Other Perennial-Frost Mounds

Pingo-like mounds occur in other geomorphic settings. For example, groups of pingo-like
mounds have been described from the Canadian Arctic islands (Balkwill et al., 1974;
Pissart, 1967a). On Prince Patrick Island, shallow mounds, between 1m and 13m in height
and with average dimensions of about 60m, are formed within thick sand formations of
Tertiary age that rest discordantly upon impervious Paleozoic-age rocks. None appears
to be growing today. Their location appears {0 coincide with deep-seated geological dis-
continuities that suggest the mounds are related to ancient groundwater movement along
faults in underlying bedrock. The pingos probably developed when permafrost first began
to form sometime during the early or middle Pleistocene. Those on Amund Ringnes
Island are equally problematic.

A second geomorphic setting is provided by elongate and partially-collapsed
mounds of varying sizes and shapes that occur in river valleys and on low fluvial terraces
of Banks Island (French, 1975b, 1976¢; French and Dutkiewicz, 1976). Most are less than
3m in height and all appear relict. Especially puzzling are remnants of small, mutually-
interfering mounds that occur on the broad fluvial surfaces of Central Banks Island. It is
hypothesized that these may be seasonal-frost-mound remnants of Late-Pleistocenc age
that formed in shallow sections of braided channel systems.

6.5.5. Seasonal-Frost Mounds

Where freezing of the active layer restricts perennial discharge from intrapermafrost or
subpermafrost aquifers, a variety of seasonal-frost mounds (frost blisters, icing blisters)
may develop at the site of groundwater discharge. These have been described from north-
ern Canada, Alaska, northern Scandinavia, Tibet, and Siberia. Typically, seasonal-frost
mounds range between 1.0m and 4.0m in height. They form by the upheaval of seasonally-
frozen ground brought about by the subsurface accumulation of water under high hydrau-
lic potential. This occurs during progressive freezing of the active layer. Figure 6.16
illustrates the formation of frost blisters, one of the most common types of seasonal-frost
mounds.

Seasonal-frost mounds are sometimes confused with palsas. The basic difference is that
the former result from ice injection while the latter result from ice segregation. Thus, the
interior of a frost blister, for example, is usually characterized by a core of pure ice with
ice crystals aligned in a vertical columnar fashion that reflects the freezing of free water
(Pollard and French, 1983, 1984, 1985).

Most seasonal-frost mounds are destroyed completely by thawing and collapse during
the first summer after their formation. However, others may be preserved through one
or more summers, depending on the insulating quality of their soil cover. As a result,

they may assume the morphology and time duration of a palsa. It is also possible that™

some mounds combine both palsa and seasonal-frost-mound growth mechanisms. For
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6.5.6. Hydrolaccoliths and Other Frost-Induced Mounds

s is the presence of small mounds, many with either

ice cores or ice lenses within them (Figure 6.17 ). These mounds are not regarded as pingos,
mainly on account of their size and their location primarily within the active layer. They
are also not usually regarded as a form of patterned ground since they are larger than the
earth hummocks or non-sorted circles normally associated with patterned ground. Many
function as owl perches and stand out as relatively dry sites. Their peaty soil frequently
promotes the development of ice lenses immediately beneath the vegetation mat.

The variety of features suggests that they are not all of the same origin. In the Russian
literature, the term “pugor” has been used to describe these small, gently-rising, and oval-
shaped mounds (Dostovalov and Kudryavtsev, 1967). The North American literature
(Sigafoos, 1951; Sharp, 1942a; Bird, 1967, p. 203; Porsild, 1955; French, 1971a; Washburn,
1983b) describes low circular mounds, rarely exceeding 2m in height, and usually between

15m and 50m in diameter. The origin of these features is not clear. Some are probably
the result of localized ice segregation that has occurred in response {0 subtle thermal dif-

ferences in soil and vegetation cover.

A feature of many tundra landscape

6.6. ACTIVE-LAYER PHENOMENA
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